
A Foundation for WebScript Programmers:
Quick Guide to Useful Classes

2

Foundation Quick Guide

This chapter gives an overview of the classes you use most commonly in
WebScript, the WebObjects scripting language. For a description of WebScript
language features and syntax, see the “Using WebScript” chapter.

Foundation Objects

Types
All the variables you create in WebScript are objects. Consequently, there is only
one data type: id. For more information on the id type, see “The id Data Type”
in the “Using WebScript” chapter.

Sending Messages
To get an object to invoke one of its methods, you send it a message. For
example, the following statement:

[colorArray removeAllObjects];

tells the object colorArray to invoke its removeAllObjects method. Message
expressions are enclosed in square brackets:

[receiver message];

The receiver is an object, and the message is the method you want to invoke and
any arguments passed to it. The following are examples of messages with
arguments:

[colorArray addObject:newColor];

[colorArray writeToFile:fileName atomically:YES];

In the first statement, newColor is an argument to the method addObject:. In the
second statement, fileName and YES are both arguments to the method
writeToFile:atomically:.

For more information on messages, see “Messaging in WebScript” in the “Using
WebScript” chapter.

Representing Objects as Strings
You can get a human-readable string representation of any object by sending it
a description message. This method is particularly useful for debugging. In some
cases, the string returned from description only contains the name of the receiver’s
class, but most objects provide more information. For class specific details, see
the description method descriptions later in this chapter.

3

Foundation Quick Guide Foundation Objects

Mutable and Immutable Objects
Some objects are immutable; once they are created, they can’t be modified.
Other objects are mutable. They can be modified at any time. When you create
an object, you can often choose to create it as either immutable or mutable.
Three kinds of objects discussed in this chapter—strings, arrays, and
dictionaries—have both immutable and mutable versions.

For clarity, it’s best to use immutable objects wherever possible. Only use a
mutable object if you need to modify its contents after you create it.

Determining Equality
You can determine if two objects are equal using the isEqual: method. isEqual:
returns YES if the receiver of the message and the specified object are equal,
NO otherwise. Different types of objects determine equality in different ways.
For example, array objects define two arrays as equal if they contain the same
contents. For more information, see the isEqual: method descriptions later in this
chapter.

Reading from and Writing to Files
Strings, arrays, and dictionaries—three of the classes discussed in this chapter—
provide methods for writing to and reading from files. The method
writeToFile:atomically: writes a textual description of the receiver’s contents to a
specified path name, and corresponding class-specific creation methods—
stringWithContentsOfFile:, arrayWithContentsOfFile:, and dictionaryWithContentsOfFile:—
create an object from the contents of a specified file.

For example, the following code excerpt:

id errorLog = [NSString stringWithContentsOfFile:errorPath];

id newErrorLog = [errorLog stringByAppendingFormat:@“%@: %@.\n”,

timeStamp, @“premature end of file.”];

[newErrorLog writeToFile:errorPath atomically:YES];

reads the contents of an error log stored in a file, appends a new error to the log,
and saves the updated log to the same file.

Writing to Files
The method writeToFile:atomically: uses the description method to obtain a human-
readable string representation of the receiver. It then writes the string to the
specified file. The resulting file is suitable for use with
classNameWithContentsOfFile: methods. This method returns YES if the file is
written successfully, and NO otherwise.

Foundation Quick Guide Working with Strings

4

If the argument for atomically: is YES, the string representation is first written to
an auxiliary file. Then the auxiliary file is renamed to the specified file name. If
flag is NO, the object is written directly to the specified file. The YES option
guarantees that the specified file, if it exists at all, won’t be corrupted even if the
system should crash during writing.

When writeToFile:atomically: fails, it returns NO. If this happens, check the
permissions on the specified file and its directory. The most common cause of
write failures is that the process owner doesn’t have the necessary permissions
to write to the file or its directory. If the argument for atomically: is NO, it’s
sufficient to grant write permissions only on the file.

Note: The configuration of your HTTP server determines the user who owns
autostarted applications.

Reading from Files
The string, array, and dictionary classes provide methods of the form
classNameWithContentsOfFile:. These methods create a new object and initialize it
with the contents of a specified file, which can be specified with a full or relative
pathname.

Working with Strings

NSString and NSMutableString objects represent static and dynamic character
strings, respectively. They may be searched for substrings, compared against
one another, combined into new strings, and so on.

The difference between NSStrings and NSMutableStrings is that you can’t
change an NSString’s contents from its initial character string. While
NSMutableStrings provide methods such as appendString: and setString: to add to
or replace the string’s contents, there are no such methods available for
NSStrings. For clarity, it’s best to use NSStrings wherever possible. Only use an
NSMutableString if you need to modify its contents after you create it.

You can create NSStrings with WebScript’s @ syntax for defining constant
objects. For example, the following statement creates an NSString:

id msg = @“The option you chose is no longer available, please choose another.”;

You can also create string objects with creation methods—methods whose
names are preceded by a + and that return new objects. The strings created with
the @ syntax are always NSStrings, so they can’t be modified. If you use a

5

Foundation Quick Guide Commonly Used String Methods

creation method instead, you can choose to create either an NSString or a
NSMutableString. The following code excerpt illustrates the creation of both
NSString and NSMutableString objects:

// Create an immutable NSString

id message = [NSString stringWithString:@“Hi”];

// Create a mutable NSMutableString

id message = [NSMutableString stringWithString:@“Hi”];

The methods provided by NSString and NSMutableString are described in
more detail in the next section, “Commonly Used String Methods.”

Commonly Used String Methods

The following sections list the most commonly used NSString and
NSMutableString methods.

Creating Strings
The methods in this section are class methods, as denoted by the plus sign (+).
You use class methods to send messages to a class—in this case, NSString and
NSMutableString. For more information on class methods, see “Messaging in
WebScript” in the “Using WebScript” chapter.

+ string

Returns an empty string. Usually used to create NSMutableStrings.
NSStrings created with this method are permanently empty.

// Most common use

id mutableString = [NSMutableString string];

// May not be what you want

id string = [NSString string];

Foundation Quick Guide Commonly Used String Methods

6

+ stringWithFormat:

Returns a string created by substituting arguments into a specified
format string in the manner that printf() does in the C programming
language. In WebScript, only the “at sign” (@) conversion character is
supported, and it expects a corresponding id argument.

// These are fine

id party = [NSString stringWithFormat:@“Party date: %@”, partyDate];

id mailto = [NSString stringWithFormat:@“mailto: %@”, [person email]];

id footer = [NSString stringWithFormat:

@“Interaction %@ in session %@.”,

numberOfInteractions, sessionNumber];

// C users, NO! This won’t work. Only %@ is supported.

id string = [NSString stringWithFormat:@“%d of %d %s”, x, y, cString];

+ stringWithString:

Returns a string containing the same contents as a specified string.
This method is usually used to create an NSMutableString from an
NSString. For example, the following statement:

id mutableString = [NSMutableString stringWithString:@“Change me.”];

creates an NSMutableString from a constant NSString object.

+ stringWithContentsOfFile:

Returns a string created by reading characters from a specified file. For
example, the following statement creates an NSString containing the
contents of the file specified in path.

id fileContents = [NSString stringWithContentsOfFile:path];

See also writeToFile:atomically:.

Combining And Dividing Strings

– stringByAppendingFormat:

Returns a string made by appending to the receiver a string
constructed from a specified format string and following arguments in
the manner of stringWithFormat:. For example, assume the variable
guestName contains the string “Rena”. Then the following code
excerpt:

id string = @“Hi”;

id message = [string stringByAppendingFormat:@“, %@!”, guestName];

produces the string message with contents “Hi, Rena!”.

7

Foundation Quick Guide Commonly Used String Methods

– stringByAppendingString:

Returns a string object made by appending a specified string to the
receiver. This code excerpt, for example:

id errorTag = @"Error: ";

id errorString = @"premature end of file.";

id errorMessage = [errorTag stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

– componentsSeparatedByString:

Returns an NSArray containing substrings from the receiver that have
been divided by a specified separator string. For example, the
following statements:

id toolString = @"wrenches, hammers, saws";

id toolArray = [toolString componentsSeparatedByString:@", "];

produce an NSArray containing the strings “wrenches”, “hammers”,
and “saws.”

See also componentsJoinedByString: (NSArray and NSMutableArray).

Comparing Strings

– compare:

Returns -1 if the receiver precedes a specified string in lexical ordering,
0 if it is equal, and 1 if it follows. For example, the following
statements:

if ([@“hello” compare:@“Hello”] == -1) {

result = [NSString stringWithFormat:

@"‘%@’ precedes ‘%@’ lexicographically.",

@“hello”, @“Hello”];

}

result in an NSString result with the contents “‘hello’ precedes ‘Hello’
lexicographically.”

– caseInsensitiveCompare:

Same as compare:, but case distinctions among characters are ignored.

Foundation Quick Guide Commonly Used String Methods

8

– isEqual:

Returns YES if a specified object is equivalent to the receiver, NO
otherwise. An object is equivalent to a string if the object is an
NSString or an NSMutableString and compare: returns 0. For example,
the following statements:

if ([string isEqual:newString) {

result = @“Found a match”;

}

assign the contents “Found a match” to result if string and newString are
lexicographically equal.

Converting String Contents

– floatValue

Returns the floating-point value of the receiver’s text as a float,
skipping white space at the beginning of the string.

– intValue

Returns the integer value of the string’s text, assuming a decimal
representation and skipping white space at the beginning of the string.

Modifying Strings

Warning: The following methods are not supported by NSString. They are only available to
NSMutableString objects.

– appendFormat:

Appends a constructed string to the receiver. Creates the new string by
using stringWithFormat: method with the arguments listed. For example,
in the following code excerpt, assume the variable guestName contains
the string “Rena”:

id message = [NSMutableString stringWithString:@“Hi”];

[message appendFormat:@“, %@!”, guestName];

message has the resulting contents “Hi, Rena!”.

– appendString:

Adds the characters of a specified string to the end of the receiver. For
example, the following statements create an NSMutableString and
append another string to its initial value:

id mutableString = [NSMutableString stringWithFormat:@“Hello ”];

[mutableString appendString:@“world!”];

mutableString has the resulting contents “Hello world!”.

9

Foundation Quick Guide Working with Arrays

– setString:

Replaces the characters of the receiver with those in a specified string.
For example, the following statement replaces the contents of an
NSMutableString with the empty string:

[mutableString setString:@“”];

Storing Strings

– writeToFile:atomically:

Writes the string to a specified file, returning YES on success and NO
on failure. If YES is specified for atomically:, this method attempts to
write the file safely so that an existing file with the specified path is
not overwritten, and the method does not create a new file at the
specified path unless the write is successful. The resulting file is
suitable for use with stringWithContentsOfFile:. For example, the
following code excerpt:

id errorLog = [NSString stringWithContentsOfFile:errorPath];

id newErrorLog = [errorLog stringByAppendingFormat:@“%@: %@.\n”,

timeStamp, @“premature end of file.”];

[newErrorLog writeToFile:errorPath atomically:YES];

reads the contents of an error log stored in a file, appends a new error
to the log, and saves the updated log to the same file.

Working with Arrays

NSArray and NSMutableArray objects manage immutable and mutable
collections of objects, respectively. Each has the following attributes:

• A count of the number of objects in the array
• The objects contained in the array

The difference between NSArray and NSMutableArray is that you can’t add to
or remove from an NSArray’s initial collection of objects. Insertion and deletion
methods provided for NSMutableArrays are not available for NSArrays.
Although their use is limited to managing static collections of objects, it is best
to use NSArrays wherever possible.

You can create NSArrays with WebScript’s @ syntax for defining constant
objects. For example, the following statements create NSArrays:

id availableQuantities = @(1, 6, 12, 48);

id shortWeekDays = @(“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”);

Foundation Quick Guide Commonly Used Array Methods

10

You can also create NSArrays with creation methods. If you want to create a
static array that contains variables, you have to use a creation method, since you
can’t use variables in WebScript’s @ syntax. The following statement creates an
NSArray that contains variables:

id dinnerPreferences = [NSArray arrayWithObjects:firstChoice, secondChoice, nil];

The variable dinnerPreferences is an NSArray, so its initial collection of objects
can’t be added to or subtracted from. When you need to create an array that can
be modified, use a creation method to create an NSMutableArray. For example,
the following statement creates an empty NSMutableArray to which you can
add objects:

id mutableArray = [NSMutableArray array];

The methods provided by NSArray and NSMutableArray are described in more
detail in the next section, “Commonly Used Array Methods.”

Commonly Used Array Methods

The following tables list the most commonly used NSArray and
NSMutableArray methods.

Creating Arrays
The methods in this section are class methods, as denoted by the plus sign (+).
You use class methods to send messages to a class—in this case, NSArray and
NSMutableArray. For more information on class methods, see “Messaging in
WebScript” in the “Using WebScript” chapter.

+ array

Returns an empty array. Usually used to create NSMutableArrays.
NSArrays created with this method are permanently empty.

// Most common use

id mutableArray = [NSMutableArray array];

// May not be what you want

id array = [NSArray array];

+ arrayWithObject:

Returns an array containing the single specified object.

11

Foundation Quick Guide Commonly Used Array Methods

+ arrayWithObjects:

Returns an array containing the objects in the argument list. The
argument list is a comma-separated list of objects ending with nil.

id array = [NSMutableArray arrayWithObjects:

@“Plates”, @“Plasticware”, @“Napkins”, nil];

+ arrayWithArray:

Returns an array containing the contents of a specified array. Usually
used to create an NSMutableArray from an immutable NSArray. For
example, the following statement:

id mutableArray = [NSMutableArray arrayWithArray:@(“A”, “B”, “C”)];

creates an NSMutableArray from a constant NSArray object.

+ arrayWithContentsOfFile:

Returns an array initialized from the contents of a specified file. The
specified file can be a full or relative pathname; the file that it names
must contain a string representation of an array, such as that produced
by the writeToFile:atomically: method. See also description.

Querying Arrays

– count

Returns the number of objects in the array.

– isEqual:

Returns YES if the specified object is an array and has contents
equivalent to the receiver, NO otherwise. Two arrays have equal
contents if they each hold the same number of objects and objects at a
given index in each array satisfy the isEqual: test.

– objectAtIndex:

Returns the object located at a specified index. Arrays have a zero-
based index. The first object in an array is at index 0, the second is at
index 1, and so on. It is an error to specify an index that is out of bounds
(greater than or equal to the array’s count).

– indexOfObject:

Returns the index of the first object in the array that is equivalent to a
specified object. To determine equality, each element of the array is
sent an isEqual: message.

– indexOfObjectIdenticalTo:

Returns the index of the first occurrence of the a specified object.

Foundation Quick Guide Commonly Used Array Methods

12

Sorting Arrays

– sortedArrayUsingSelector:

Returns an NSArray that lists the receiver’s elements in ascending
order, as determined by a specified method. This method is used to
sort arrays containing strings and/or numbers. For example, the
following code excerpt:

id guestArray = @(“Suzy”, “Alice”, “John”, “Peggy”, “David”);

id sortedArray = [guestArray sortedArrayUsingSelector:@“compare:”];

creates the NSArray sortedArray containing the string “Alice” at index 0,
“David” at index 1, and so on.

Adding and Removing Objects

Warning: The following methods are not supported by NSArray. They are only available to
NSMutableArray objects.

– addObject:

Adds a specified object at the end of the receiver. It is an error to
specify nil as an argument to this method. You can not add nil to an array.

– insertObject:atIndex:

Inserts an object at a specified index. If the specified index is already
occupied, the objects at that index and beyond are shifted down one
slot to make room. The specified index can’t be greater than the
receiver’s count, and the specified object man not be nil.

Array objects have a zero-based index.. The first object in an array is at
index 0, the second is at index 1, and so on. You can only insert new
objects in ascending order—with no gaps. Once you add two objects,
the array's size is 2, so you can insert objects at indexes 0, 1, or 2. Index
3 is illegal and out of bounds.

It is an error to specify nil as an argument to this method. You can not
add nil to an array. It is also an error to specify an index that is greater
than the array’s count.

– removeObject:

Removes all objects in the array equivalent to a specified object, and
moves elements up as necessary to fill any gaps. Equivalency is
determined using the isEqual: method.

13

Foundation Quick Guide Commonly Used Array Methods

– removeObjectIdenticalTo:

Removes all occurrences of a specified object, and moves elements up
as necessary to fill any gaps.

– removeObjectAtIndex:

Removes the object at a specified index and moves all elements
beyond the index up one slot to fill the gap. Arrays have a zero-based
index. The first object in an array is at index 0, the second is at index
1, and so on.

It is an error to specify an index that is out of bounds (greater than or
equal to the array’s count).

– removeAllObjects

Empties the receiver of all of its elements.

– setArray:

Empties the receiver of all its elements, then adds the contents of a
specified array.

Storing Arrays

– writeToFile:atomically:

Writes the array’s string representation to a specified file using the
description method. Returns YES on success and NO on failure. If YES
is specified for atomically:, this method attempts to write the file safely
so that an existing file with the specified path is not overwritten, and
it does not create a new file at the specified path unless the write is
successful. The resulting file is suitable for use with
arrayWithContentsOfFile:. For example, the following code excerpt:

id guestArray = [NSMutableArray arrayWithContentsOfFile:path];

[guestArray addObject:newGuest];

[guestArray writeToFile:path atomically:YES];

creates guestArray with the contents of the specified file, adds a new
guest, and saves the changes to the same file.

Foundation Quick Guide Working with Dictionaries

14

Representing Arrays as Strings

– description

Returns a string that represents the contents of the receiver. For
example, the following code excerpt:

id array = [NSMutableArray arrayWithObjects:

@“Plates”, @“Plasticware”, @“Napkins”, nil];

id description = [array description];

produces the string “(Plates, Plasticware, Napkins)”.

– componentsJoinedByString:

Returns an NSString created by interposing a specified string between
the elements of the receiver’s objects. Each element of the array must
be a string. If the receiver has no elements, an empty string is returned.
See also componentsSeparatedByString: (NSString and NSMutableString).
For example, the following code excerpt:

id commaString = @“A, B, C”;

id array = [string componentsSeparatedByString:@“,”];

id dash String = [array componentsJoinedByString:@“-”];

creates the NSString dashString with the contents “A-B-C”.

Working with Dictionaries

NSDictionary and NSMutableDictionary objects store collections of key-value
pairs. The key-value pairs within a dictionary are called entries. Each entry
consists of an NSString that represents the key and a second object which is that
key’s value. Within a dictionary, the keys are unique. That is, no two keys in a
single dictionary are equivalent. You use dictionaries to store objects that can be
uniquely identified by strings.

The difference between NSDictionary and NSMutableDictionary is that you
can’t add, modify, or remove entries from an NSDictionary’s initial collection of
entries. Insertion and deletion methods provided for NSMutableDictionaries
are not available for NSDictionaries. Although their use is limited to managing
static collections of objects, it’s best to use NSDictionaries wherever possible.

15

Foundation Quick Guide Commonly Used Dictionary Methods

You can create NSDictionaries with WebScript’s @ syntax for defining constant
objects. For example, the following statements create NSDictionaries:

id sizes = @{“S” = “Small”; “M” = “Medium”; “L” = “Large”; “X” = “Extra Large”};

id defaultPreferences = @{

“seatAssignment” = “Window”;

“smoking” = “Non-smoking”;

“aircraft” = “747”};

You can also create dictionaries with creation methods. For example, if you want
to create an NSDictionary that contains variables, you have to use a creation
method. You can’t use variables with WebScript’s @ syntax. The following
statement creates an NSDictionary that contains variables:

id customerPreferences = [NSDictionary dictionaryWithObjectsAndKeys:

seatingPreference, @“seatAssignment”,

smokingPreference, @“smoking”,

aircraftPreference, @“aircraft”, nil];

The variable customerPreferences is an NSDictionary, so its initial collection of
entries can’t be modified. To create a dictionary that can be modified, use a
creation method to create an NSMutableDictionary. For example, the following
statement creates an empty NSMutableDictionary:

id dictionary = [NSMutableDictionary dictionary];

The methods provided by NSDictionary and NSMutableDictionary are
described in more detail in the next section, “Commonly Used Dictionary
Methods.”

Commonly Used Dictionary Methods

The following sections list some of the most commonly used methods of
NSDictionary and NSMutableDictionary.

Creating Dictionaries
The methods in this section are class methods, as denoted by the plus sign (+).
You use class methods to send messages to a class—in this case, NSDictionary

Foundation Quick Guide Commonly Used Dictionary Methods

16

and NSMutableDictionary. For more information on class methods, see
“Messaging in WebScript” in the “Using WebScript” chapter.

+ dictionary

Returns an empty dictionary. Usually used to create
NSMutableDictionaries. NSDictionaries created with this method are
permanently empty.

// Most common use

id mutableDictionary = [NSMutableDictionary dictionary];

// May not be what you want

id dictionary = [NSDictionary dictionary];

+ dictionaryWithObjects:forKeys:

Returns a dictionary containing entries constructed from the contents
of a specified array of objects and a specified array of keys. The two
arrays must have the same number of elements.

id preferences = [NSMutableDictionary

dictionaryWithObjects:@(“window”, “non-smoking”, “747”)

forKeys:@(“seatAssignment”, “smoking”, “aircraft”)];

+ dictionaryWithObjectsAndKeys:

Returns a dictionary containing entries constructed from a specified set
of objects and keys. dictionaryWithObjectsAndKeys: takes a variable
number of arguments: a list of alternating objects and keys ending with
nil.

id customerPreferences = [NSDictionary dictionaryWithObjectsAndKeys:

seatingPreference, @“seatAssignment”,

smokingPreference, @“smoking”,

aircraftPreference, @“aircraft”, nil];

+ dictionaryWithDictionary:

Returns a dictionary containing the contents of a specified dictionary.
Usually used to create an NSMutableDictionary from an immutable
NSDictionary.

+ dictionaryWithContentsOfFile:

Returns a dictionary initialized from the contents of a specified file.
The specified file can be a full or relative pathname; the file that it
names must contain a string representation of a dictionary, such as that
produced by the writeToFile:atomically: method.

See also description.

17

Foundation Quick Guide Commonly Used Dictionary Methods

Querying Dictionaries

– allKeys

Returns an array containing the dictionary’s keys or an empty array if
the dictionary has no entries. This method is useful for accessing all the
entries in a dictionary. For example, the following code excerpt:

id index;

id keys = [dictionary allKeys];

for (index = 0; index < [keys count]; index++) {

value = [dictionary objectForKey:[keys objectAtIndex:index];

// Use the value

}

creates the NSArray keys and uses it to access the value of each entry
in the dictionary.

– allKeysForObject:

Returns an array containing all the keys corresponding to values
equivalent to a specified object. Equivalency is determined using the
isEqual: method. If the specified object isn’t equivalent to any of the
values in the receiver, this method returns nil.

– allValues:

Returns an array containing the dictionary’s values, or an empty array
if the dictionary has no entries.

Note that the array returned from allValues may have a different count
than the array returned from allKeys. An object can be in a dictionary
more than once if it corresponds to multiple keys.

– keysSortedByValueUsingSelector:

Returns an NSArray containing the dictionary’s keys such that their
corresponding values are sorted in ascending order, as determined by a
specified method. For example, the following code excerpt:

id choices = @{“Steak” = 3; “Seafood” = 2; “Pasta” = 1};

id keys = [choices sortedByValueUsingSelector:@“compare:”];

creates the NSArray keys containing the string “Pasta” at index 0,
“Seafood” at index 1, and “Steak” at index 2.

– count

Returns the number of entries currently in the dictionary.

Foundation Quick Guide Commonly Used Dictionary Methods

18

– isEqual:

Returns YES if the specified object is a dictionary and has contents
equivalent to the receiver, NO otherwise. Two dictionaries have
equivalent contents if they each hold the same number of entries and,
for a given key, the corresponding value objects in each dictionary
satisfy the isEqual: test.

– objectForKey:

Returns the object that corresponds to a specified key. For example,
the following code excerpt:

id preferences = [NSMutableDictionary

dictionaryWithObjects:@(“window”, “non-smoking”, “747”)

forKeys:@(“seatAssignment”, “section”, “aircraft”)];

id sectionPreference = [dictionary objectForKey:@“section”];

produces the NSString sectionPreference with the contents “non-
smoking”.

Adding, Removing, and Modifying Entries

Warning: The following methods are not supported by NSDictionary. They are only available to
NSMutableDictionary objects.

– setObject:forKey:

Adds an entry to the receiver, consisting of a specified key and its
corresponding value object. If the receiver already has an entry for the
specified key, the previous value for that key is replaced with the
argument for setObject:. For example, the following code excerpt:

id dictionary = [NSMutableDictionary dictionaryWithDictioary:

@{“seatAssignment” = “window”}];

[dictionary setObject:@“non-smoking” forKey:@“section”];

[dictionary setObject:@“aisle” forKey:@“seatAssignment”];

produces the NSMutableDictionary dictionary with the value “non-
smoking” for the key “section” and the value “aisle” for the key
“seatAssignment”. Notice that the original value for “seatAssignment”
is replaced.

It is an error to specify nil as an argument for setObject: or forKey:. You
can’t put nil in a dictionary as a key or as a value.

– addEntriesFromDictionary:

Adds the entries from a specified dictionary to the receiver. If both
dictionaries contain the same key, the receiver’s previous value for that
key is replaced with the new value.

19

Foundation Quick Guide Commonly Used Dictionary Methods

– removeAllObjects

Empties the dictionary of its entries.

– removeObjectForKey:

Removes the entry for a specified key.

– removeObjectsForKeys:

Removes the entries for each key in a specified array.

– setDictionary:

Removes all the entries in the receiver, then adds the entries from a
specified dictionary.

Representing Dictionaries as Strings

– description

Returns a string that represents the contents of the receiver. For
example, the following code excerpt:

id preferences = [NSMutableDictionary

dictionaryWithObjects:@(“window”, “non-smoking”, “747”)

forKeys:@(“seatAssignment”, “section”, “aircraft”)];

id description = [preferences description];

produces the string “{“seatAssignment” = “Window”; “section” =
“Non-smoking”; “aircraft” = “747”}”.

Storing Dictionaries

– writeToFile:atomically:

Writes the dictionary’s string representation to a specified file using
the description method. Returns YES on success and NO on failure. If
YES is specified for atomically:, this method attempts to write the file
safely so that an existing file with the specified path is not
overwritten, and it does not create a new file at the specified path
unless the write is successful. The resulting file is suitable for use
with dictionaryWithContentsOfFile:. For example, the following excerpt:

id defaults = [NSMutableDictionary

dictionaryWithContentsOfFile:path];

[defaults setObject:newLanguagePreference forKey:@“Language”];

[defaults writeToFile:path atomically:YES];

creates an NSMutableDictionary from the contents of the file specified
by path, updates the object for the key @“Language”, and saves the
updated dictionary back to the same file.

See also description.

Foundation Quick Guide Working with NSCalendarDates

20

Working with NSCalendarDates

NSCalendarDate objects represent dates and times. These objects are
especially suited for representing and manipulating dates according to western
calendrical systems. NSCalendarDate performs date computations based on
western calendrical systems, primarily the Gregorian.

The methods provided by NSCalendarDate are described in more detail in the
section “Commonly Used NSCalendarDate Methods.”

The Calendar Format
Each NSCalendarDate object has a calendar format associated with it. This
format is a string that contains date-conversion specifiers that are very similar to
those used in the standard C library function strftime(). NSCalendarDate
interprets dates that are represented as strings conforming to this format. You
can set the default format for an NSCalendarDate object at initialization time or
using the setCalendarFormat: method. Several methods allow you to specify
formats other than the one bound to the object.

The date conversion specifiers cover a range of date conventions:

Conversion Specifier Argument Type

%% a '%' character

%A, %a full and abbreviated weekday name, respectively

%B, %b full and abbreviated month name, respectively

%d day of the month as a decimal number (01-31)

%F milliseconds as a decimal number (000-999)

%H, %I hour based on a 24-hour or 12-hour clock as a decimal number,
respectively. (00-23 or 01-12)

%j day of the year as a decimal number (001-366)

%M minute as a decimal number (00-59)

%p AM/PM designation for the locale

%S second as a decimal number (00-59)

%w weekday as a decimal number (0-6), where Sunday is 0

%Y, %y year with century (such as 1990) and year without century (00-99),
respectively.

%Z, %z time zone abbreviation (such as PDT) and time zone offset in
hours and minutes from GMT (HHMM), respectively.

21

Foundation Quick Guide Commonly Used NSCalendarDate Methods

Commonly Used NSCalendarDate Methods

The following sections list some of the most commonly used methods of
NSCalendarDate.

Creating NSCalendarDates
The methods in this section are class methods, as denoted by the plus sign (+).
You use class methods to send messages to a class—in this case,
NSCalendarDate. For more information on class methods, see Messaging in
WebScript in “Using WebScript.”

+ calendarDate

Returns an NSCalendarDate initialized to the current date and time.

+ dateWithString:calendarFormat:

Returns an NSCalendarDate initialized to the date in a provided
string, and sets the new NSCalendarDate’s calendar format to the
specified format. The date string must match the provided format
exactly. See “The Calendar Format” for more detailed information on
formats used by NSCalendarDate.

Adjusting an NSCalendarDate

– addYear:month:day:hour:minute:second:

Returns an NSCalendarDate derived from the receiver by adding a
specified number of years, months, days, hours, minutes, and seconds.

Representing NSCalendarDates as Strings

– description

Returns a string representation of the NSCalendarDate formatted
according to the NSCalendarDate’s default calendar format.

– descriptionWithCalendarFormat:

Returns a string representation of the receiver formatted according to
the provided format string.

– calendarFormat

Returns a string that indicates the receiver’s default calendar format.
See “The Calendar Format” for more detailed information on formats used
by NSCalendarDate.

– setCalendarFormat:

Set the receiver’s default calendar format to the provided string.

Foundation Quick Guide Commonly Used NSCalendarDate Methods

22

Retrieving NSCalendarDate Elements

– dayOfWeek

Returns a number that indicates the NSCalendarDate’s day of the
week (0-6).

– dayOfMonth

Returns the NSCalendarDate’s day of the month (1-31).

– dayOfYear

Returns a number that indicates the NSCalendarDate’s day of the year
(1-366).

– dayOfCommonEra

Returns the NSCalendarDate’s number of days since the beginning of
the Common Era. The base year of the Common Era is 1 A.C.E.
(which is the same as 1 A.D.).

– monthOfYear

Returns a number that indicates the NSCalendarDate’s month of the
year (1-12).

– yearOfCommonEra

Returns the NSCalendarDate’s year value (including the century).

– hourOfDay

Returns the NSCalendarDate’s hour value (0-23).

– minuteOfHour

Returns the NSCalendarDate’s minutes value (0-59).

– secondOfMinute

Returns the NSCalendarDate’s seconds value (0-59).

